Study of the Oxygen Electrode Reaction Using Mixed Conducting Oxide Surface Layers. Part Ii: Small Signal Analysis

نویسندگان

  • M. P. VAN DIJK
  • K. J. DE VRIES
  • A. J. BURGGRAAF
چکیده

The oxygen gas electrode has been studied for a number of mixed conducting oxide surface layers on top of Gd2Zr20 I (TGZO) solid electrolytes. In part II of this paper we present the results of frequency dispers on measurements for the electrode reaction, supplying additional information to the results of current-overvoltage experiments presented in part I. For both kinds of experiments the same trends were observed for the electrode polarization. Best results are obtained for a surface layer of TGZO, while p-type mixed conducting oxides give less decreased values of the electrode polarization. High electrode capacitances were found in the case of mixed conducting surface layers (about 700 F/m2). The electrode reactions follow a Butler-Volmer type of equation. Most probably a diffusion process is rate controlling the overall charge transfer process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: 0167-2738(86)90011-1

The oxygen gas electrode has been studied for a number of mixed conducting oxide surface layers on top of GdpZr20 P (TGZO) solid electrolytes. In part II of this paper we present the results of frequency dispers on measurements for the electrode reaction, supplying additional information to the results of current-overvoltage experiments presented in part I. For both kinds of experiments the sam...

متن کامل

Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells

Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...

متن کامل

Introducing Pt/ZnO as a new non carbon substrate electro catalyst for oxygen reduction reaction at low temperature acidic fuel cells

Gas diffusion electrode was used for providing better conditions in fuel cell systems for oxygen reduction reaction (ORR). Because the slow kinetics of the oxygen reduction reaction at the proton exchange membrane fuel cell cathode restricts fuel cell efficiency. To this end, researchers have used platinum-coated carbon. In the present study, due to the reduction of carbon corrosion, Zinc oxide...

متن کامل

Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction

In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...

متن کامل

Kinetics analysis of electrophoretic deposition using small signal and large signal modeling, Case study: Nano-Mullite suspension

Having sufficient and accurate understanding about kinetics of phenomena, could be an important reason for further technological progresses. Finding a white-box mathematical model for weight vs. time curves of Electrophoretic Deposition (EPD) using large and small signal analysis has been studied thoroughly in the present investigation. Weight-Time curves of nano-Mullite suspension have been tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002